Accueil UnitésOptimisation en informatique
RCP104

U.E Optimisation en informatique

nombre d’heures
51
Modalités 100% à distance
Crédits ects
6

Où se
former?

1 Centre d’enseignement en Nouvelle-Aquitaine

Quand se former ?

Rentrée
Permanente !
voir toutes les dates

Votre projet professionnel commence ici !

Formez-vous avec

Dites-nous tout sur votre projet !

Choisissez une session de formation

Centres de formation :
Modalités d’enseignement : 100% à distance Mixte : à distance + cours en salle Présentiel
Centres de formation Prochaines sessions Modalités Informations
Nouvelle-Aquitaine Février 2021
Septembre 2021

2nd semestre
RCP104-2020-2-FR-NA

Pas d'information disponible

Planning : Première séance le mer 24/02/21 18h.
Validation de l'UE : Examen sur table 18/06/21, 10/09/21.
Informations non contractuelles, susceptibles de modification.

Session 2021/2022
Centres de formation Prochaines sessions Modalités Informations
Nouvelle-Aquitaine Février 2022
Septembre 2022

2nd semestre
RCP104-2021-2-FR-NA

Pas d'information disponible

Session 2022/2023
Centres de formation Prochaines sessions Modalités Informations
Nouvelle-Aquitaine Février 2023
Septembre 2023

2nd semestre
RCP104-2022-2-FR-NA

Pas d'information disponible

Voir ma liste de formation
Prérequis :

Élèves ingénieurs, étudiants de master M1.
Prérequis : avoir des connaissances de base en algorithmique, réseaux informatiques, programmation, graphes et recherche opérationnelle.

Objectifs :

A partir de problèmes concrets en informatique (majoritairement, mais pas exclusivement, issus des réseaux de télécommunication), apprendre à traiter des problèmes difficiles de la recherche opérationnelle : savoir écrire un modèle mathématique et proposer des méthodes, optimales ou non (mais efficaces malgré tout), utilisant des outils pratiques pour résoudre ces problèmes (méthodes heuristiques, programmation linéaire et logiciels).

Compétences visées :

L'étudiant ayant suivi cet enseignement sait reconnaître et modéliser un problème de recherche opérationnelle. Il sait le résoudre avec des outils simples. Il sait en particulier aborder certains problèmes d'optimisation combinatoire dans les réseaux informatiques.

Nous contacter

1- Présentation de l'ensemble du cours à partir d'un problème d'optimisation concret (localisation). Le problème est-il difficile (du point de vue de la complexité) ? Si oui, comment écrire un modèle mathématique ? Ce modèle permet-il d'obtenir de façon suffisamment efficace une solution optimale à l'aide d'un logiciel ? Si oui, l'étude est terminée. Sinon, comment obtenir une solution approchée et comment valider la solution trouvée ?
2- Apprendre à écrire un programme mathématique : choisir les variables, déterminer leurs domaines, écrire l'objectif et les contraintes. Particularité des modèles en variables binaires ou entières. Travail sur des "cas d'école" : partition de graphes (clustering), coloration (planification), etc.
Application à divers problèmes réels : dimensionnement/conception de réseaux, routage multicast dans les réseaux, placement de copies de fichiers, etc.
3- Apprendre à transformer un problème d'optimisation non linéaire en un programme linéaire de façon à pouvoir utiliser les logiciels. Techniques de linéarisation, prise en compte de rapports ou de produits de variables, etc.
4- Résolution approchée de problèmes difficiles par des méthodes générales (recuit simulé, méthode tabou, algorithmes génétiques, etc.) ou par des méthodes spécifiques (heuristiques ad-hoc). Validation des résultats obtenus par les heuristiques à l'aide de bornes basées, par exemple, sur la résolution du problème (ou d'une relaxation) par un solveur (ou logiciel de résolution).
5- Utilisation d'un solveur libre d'accès (par exemple, GLPK) par le biais d'un modeleur (GMPL) ou du format de fichier LP. Mise en oeuvre sur ordinateur pendant certaines séances. Rappel des principes de la programmation linéaire, et introduction aux techniques de résolution de programmes linéaires en nombres entiers.
6- Étude d'un cas réel, sous la forme d'un projet ou d'un (ou plusieurs) TP noté.

Modalités de validation :

Examen noté sur 16.
Projet ou TP noté sur 4.

Nous contacter

Agenda

Choisissez une session de formation

Centres de formation
Modalités d’enseignement : 100% à distance Mixte : à distance + cours en salle Présentiel
  • Session 2020/2021

  • Session 2021/2022

  • Session 2022/2023

Présentation

Prérequis :

Élèves ingénieurs, étudiants de master M1.
Prérequis : avoir des connaissances de base en algorithmique, réseaux informatiques, programmation, graphes et recherche opérationnelle.

Objectifs :

A partir de problèmes concrets en informatique (majoritairement, mais pas exclusivement, issus des réseaux de télécommunication), apprendre à traiter des problèmes difficiles de la recherche opérationnelle : savoir écrire un modèle mathématique et proposer des méthodes, optimales ou non (mais efficaces malgré tout), utilisant des outils pratiques pour résoudre ces problèmes (méthodes heuristiques, programmation linéaire et logiciels).

Compétences visées :

L'étudiant ayant suivi cet enseignement sait reconnaître et modéliser un problème de recherche opérationnelle. Il sait le résoudre avec des outils simples. Il sait en particulier aborder certains problèmes d'optimisation combinatoire dans les réseaux informatiques.

Nous contacter

1- Présentation de l'ensemble du cours à partir d'un problème d'optimisation concret (localisation). Le problème est-il difficile (du point de vue de la complexité) ? Si oui, comment écrire un modèle mathématique ? Ce modèle permet-il d'obtenir de façon suffisamment efficace une solution optimale à l'aide d'un logiciel ? Si oui, l'étude est terminée. Sinon, comment obtenir une solution approchée et comment valider la solution trouvée ?
2- Apprendre à écrire un programme mathématique : choisir les variables, déterminer leurs domaines, écrire l'objectif et les contraintes. Particularité des modèles en variables binaires ou entières. Travail sur des "cas d'école" : partition de graphes (clustering), coloration (planification), etc.
Application à divers problèmes réels : dimensionnement/conception de réseaux, routage multicast dans les réseaux, placement de copies de fichiers, etc.
3- Apprendre à transformer un problème d'optimisation non linéaire en un programme linéaire de façon à pouvoir utiliser les logiciels. Techniques de linéarisation, prise en compte de rapports ou de produits de variables, etc.
4- Résolution approchée de problèmes difficiles par des méthodes générales (recuit simulé, méthode tabou, algorithmes génétiques, etc.) ou par des méthodes spécifiques (heuristiques ad-hoc). Validation des résultats obtenus par les heuristiques à l'aide de bornes basées, par exemple, sur la résolution du problème (ou d'une relaxation) par un solveur (ou logiciel de résolution).
5- Utilisation d'un solveur libre d'accès (par exemple, GLPK) par le biais d'un modeleur (GMPL) ou du format de fichier LP. Mise en oeuvre sur ordinateur pendant certaines séances. Rappel des principes de la programmation linéaire, et introduction aux techniques de résolution de programmes linéaires en nombres entiers.
6- Étude d'un cas réel, sous la forme d'un projet ou d'un (ou plusieurs) TP noté.

Modalités de validation :

Examen noté sur 16.
Projet ou TP noté sur 4.

Nous contacter
Tarif indicatif
1 020

Mobilisez les financements auxquels vous avez droit !

Votre entreprise

finance

1 020

Vous payez

0

Pôle Emploi



finance

510

Vous payez

0

Votre CPF

Compte Personnel de Formation

finance

1 020

Vous payez

0

Le Conseil Régional

finance

Vous payez

156 (1)

AG2R (2)
La Mondiale

finance
700

/module (4 modules maximum/an)

Vous payez

0
(1) -20% pour les demandeurs d'emploi (2) Dispositif réservé aux adhérents demandeurs d'emploi

Besoin de plus d’information sur les dispositifs de financement ?

Demandez l’aide
d’un conseiller
Cnam Nouvelle-Aquitaine

Valorisez votre formation avec un diplôme !

CPN8401A
Titre RNCP Niveau 6 (ex niveau II) Concepteur en architecture...
CPN8402A-1
Titre RNCP Niveau 6 (ex niveau II) Concepteur en architecture...
CPN8402A-2
Titre RNCP Niveau 6 (ex niveau II) Concepteur en architecture...
CYC9101A
Diplôme d'ingénieur Spécialité informatique parcours Architecture...
CYC9104A
Diplôme d'ingénieur Spécialité informatique parcours Informatique,...
CYC9105A
Diplôme d'ingénieur Spécialité informatique parcours Informatique...
Appuyer sur Entrée pour chercher ou la touche ESC pour fermer
    top